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Abstract

Due to its invasiveness, heterogeneity and multiple-drug resistance, pancreatic ductal adenocarcinoma (PDAC) 
has been considered as a refractory malignant tumor. Although various studies have been conducted on the 
potential mechanisms that promote PDAC origination and metastasis, the research results and clinical transla-
tion to treat PDAC still need improvement. With the development of individualized medicine and the imple-
mentation of gene sequencing, it has been confirmed that myelocytomatosis oncogene (MYC) contributes to 
poor prognosis in cancer cases. Furthermore, the deregulation of MYC exists in a majority of pancreatic cancer 
types, and is crucial for tumor cell proliferation and migration. Several recent studies have revealed the specific 
mechanisms of MYC in affecting PDAC, and clarified suppression of MYC as a promising therapeutic strategy. 
This review focused on emerging novel therapeutic strategies based on the direct or indirect targeting of MYC 
to combat PDAC.
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Introduction

The oncogene, myelocytomatosis oncogene (MYC), is a typical 
tumor-related gene involved in the origination and progression of 
a range of malignancies. Under normal conditions, the Myc pro-
tein (c-Myc), along with its homologous proteins (N-Myc, and L-
Myc), are regulated by multiple intracellular signaling pathways. 
However, the MYC family members would be out of control dur-
ing the period of tumorigenesis. With the development of next gen-
eration sequencing technology, approximately 50–60% of tumors 
have been detected with the upregulation of MYC expression.1,2 
The deregulation of MYC genes involves two major mechanisms: 
the activation of the KRAS/ERK pathway and the depression of 
the TGF-β/Smad4 pathway.3,4 In addition, the abnormal activa-
tion of the intracellular signal network would converge on the 
MYC overexpression or protein stabilization, and confer the Myc-
deregulated phenotype to cells. MYC plays an important role in 
malignant changes through gene amplification and translocation, 
mRNA upregulation, protein stabilization, the cell cycle, etc.5 Fur-
thermore, MYC promotes the aggressiveness of tumors by enhanc-
ing the expression of genetic materials, the bio-function of pro-
teins, the proliferation of cancer cells, and energy metabolism (Fig. 
1).6–9 Moreover, MYC induces the conversion to tumor stem cells, 
and adapts cancer cells to the tumor microenvironment (TME) by 
stimulating cancer-associated fibroblasts and facilitating immune 
evasion.10,11 MYC-driven cancers harbor a poor prognosis with an 
elevated probability of drug resistance and post-operation recur-
rence.1 As a result, the deregulation of c-Myc is a harmful mutation 
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that elevates the level of tumor-related gene expression, regardless 
of whether it was the previous transcriptional target.

Pancreatic ductal adenocarcinoma (PDAC) has been marked as 
one of the most challenging cancer types, which is characterized 
by dormant symptoms, high heterogeneity, and easy metastasis. 
Compared to other tumors, PDAC is basically resistant to tradi-
tional non-surgical therapy. Hence, the estimated 5-year survival 
rate for PDAC is approximately 5–10%.12 Although various stud-
ies have been conducted on the potential mechanisms that promote 
PDAC origination and metastasis, the research results and clinical 

translation to treat PDAC still need to be improved. It has been re-
ported that the rate of mutation of MYC can reach as high as 42% 
in advanced PDAC.13 Given the fact that personalized treatment 
works in MYC-driven leucocythemia, breast cancer and other sol-
id tumors, new therapeutic approaches for PDAC that target MYC 
would have a promising future. However, the research progress 
for the discovery of MYC inhibitors has not been smooth, because 
MYC is “undruggable”. In particular, c-Myc has three critical do-
mains (Fig. 2): (1) the amino-terminal domain, harbors conserved 
Myc box I and II, which are essential for the transactivation of 

Fig. 2. Structure of MYC proteins and MAX. MYC has three functional regions: the transaction region, the central region, and the DNA binding region. Nota-
bly, the basic-region/helix-loop-helix/leucine-zipper motif, which also exists in MAX, is critical for DNA-protein interactions. MB: Myc box. BR: basic region. 
HLH: helix-loop-helix. LZ: leucine zipper.

Fig. 1. Spectrum of cellular functions regulated by MYC. Reproduced from Reference 9 with permission from Springer Nature, Copyright 2018. MYC has 
interactions with a wide range of biomolecules, profoundly influencing cellular activities, including gene expression, DNA repair and genome stability, cell 
cycle and proliferation, energy metabolism, signal transduction, cell movement, etc. The deregulation of these processes together contribute to the tumo-
rigenesis and development of pancreatic cancer. BIN1, bridging integrator 1; CDK, Cyclin-dependent kinase; CDKis, Cyclin-dependent kinase inhibitors; E2F, 
transcription factor 2; GLS, glutaminase; GLUT1, glucose transporter type 1; LDH, lactate dehydrogenase; MLH1, mutL homolog 1.
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Myc target genes; (2) the basic helix-loop-helix (HLH) DNA bind-
ing domain; (3) the carboxyterminal domain (CTD), comprises of 
the Myc leucine zipper (LZ) domain. The Myc itself, as a tran-
scription factor, has no specific binding site for small molecules or 
targeted drugs to directly inhibit its activity. In addition, specific 
monoclonal antibodies are unable to target MYC, because it is lo-
cated inside the cell nucleus.14 In order to overcome these obsta-
cles, alternative methods of indirectly targeting MYC are being 
deeply explored.

Since recent studies have revealed that in a wide range of as-
pects, MYC facilitates PDAC tumorigenesis and development, and 
clarified the suppression of MYC as a promising therapeutic strate-
gy, various in vivo or in vitro researches are being undertaken. The 
present review focused on emerging novel therapeutic strategies 
based on the direct or indirect targeting of MYC to combat PDAC.

MYC in PDAC

The abnormal activation of MYC is a key event in PDAC onset 
and progression. MYC overexpression occurs in up to 42% of ad-
vanced PDAC, impressively demonstrating the putative oncogenic 
impact of this transcription factor.13,15 The most common type of 
mutation is gene amplification, with a frequency of 12.8% in pan-
creatic cancer patients. It has been reported that the amplification 
of MYC is associated with worse survival in PDAC patients, es-
pecially for the adenosquamous subtype.16 As a major upstream 
promoter of MYC, KRAS mutation occurs in approximately 30% 
of all human tumors, and this can reach as high as 90% in PDAC.17 
PDAC develops from pancreatic intraepithelial neoplasia, in 
which the KRAS proto-oncogene is mutated and progresses to ma-
lignant PDAC through multiple mechanisms that involve different 
transcription factors, such as Myc, CDKN2A (p16), SMAD4 and 
TP53. Based on its prominent role in acinar cell growth and dif-
ferentiation, MYC has become a prime candidate for executing the 
KRAS-driven neoplastic transformation in the pancreas. Evidence 
has revealed that the function of c-Myc is highly dependent on 
the dose and cellular profile, as well as the recently demonstrated 
ability to reprogram somatic cells into a pluripotent stem cell-like 
state.18 In other words, MYC overexpression is a sign of malignant 
growth, inducing stem cells to self-update, and preventing cellular 
senescence and differentiation. In addition, MYC contributes to 
the glucometabolic process in PDAC tumor cells, which prevents 
tumor cells from reaching a depleted nutrient state, and promotes 
tumor growth and metastasis.7 Several new attempts have also re-
vealed that MYC participates in epigenetic modification: MYC 
bides the specific region of the target gene, and simultaneously 
gathers chromatin remodeling co-factors in promoter regions.19,20 
The regulation of some epigenetic modifiers that remodel the en-
tire chromatin structure has been confirmed to have connections 
with PDAC development. To some extent, chromatin-associated 
proteins play an important role in MYC-driven PDAC, bring-
ing new insight to MYC-associated vulnerabilities. Furthermore, 
MYC confers resistance to multiple targeted therapies, highlight-
ing the need for research on MYC-targeted therapy.21–23

Indirect targeting of MYC

Considering its pathogenesis process and practical value, the al-
ternative approaches in indirectly targeting MYC in MYC-related 
PDAC can basically be divided into six classifications: (1) target-
ing the MYC transcription; (2) targeting the MYC mRNA transla-

tion; (3) targeting the MYC stability; (4) targeting the MYC-MAX 
interaction; (5) targeting the accessibility of MYC to downstream 
genes; (6) gene synthetic lethality (Table 1, Fig. 3).

Targeting the MYC gene transcription

The inhibition of MYC transcription can be divided into two cat-
egories: (1) to block upstream pathways that drive MYC transcrip-
tion; (2) to suppress the transcription at the DNA level, including 
stabilizing the structure of the G-quadruplex (G4) and hindering 
the assembly of the transcription complex.

TGF-β-related inhibitors

Multiple mechanisms participate in MYC transactivation in its 
promoter regions. For instance, NF-κB directly works by combin-
ing with the MYC promoter, and the β-catenin/TCF4 complexes 
take effect in the MYC enhancer, in order to activate the MYC 
promoter.24–26 In contrast, the TGF-β/Smad4 pathway acts as a 
negative regulator for the MYC transcription promoter.27 Howev-
er, due to the internal dysfunction or external interference towards 
the Smad family, the TGF-β signal can sometimes transform from 
a cancer-suppression element to a cancer-promoting element. It 
has been reported that the SMAD gene is deleted or mutated in 
over 50% of human PDACs.28 Hence, inhibitors LY2109761 and 
FK506, which target switched TGF-β and the interference factor-
calcium responsive nuclear factor of activated T cell c1 (NFATc1), 
respectively, were exploited, and these primarily demonstrated the 
ability to inhibit PDAC cell proliferation and growth in experi-
ments in vitro.29

TGF-β can also modulate the MYC expression through non-
SMAD-signaling. A recent research demonstrated the high levels 
of c-Myc expression in tumor tissues in advanced PDAC cases 
through the non-SMAD TGF-β signaling pathway.30 In particular, 
this phenomenon is tightly connected with the interaction between 
TGF-β and tumor-associated macrophages (TAM). Furthermore, 
its subsequent study revealed that the use of galunisertib (a kind 
of TGF-β receptor inhibitor) plus gemcitabine can remarkably 
decrease the c-Myc expression. In the past few years, anti-TGF-
β-based therapies for PDAC have made significant progress. 
TGF-β inhibitors, such as galunisertib and AP12009, have recently 
completed the phase I clinical trials, but the results have not been 
posted.

Stabilization of G-quadruplexes

G4s are four-stranded, non-canonical secondary structures formed 
by guanine-rich DNA sequences. The structure of a G-quartet is 
formed by Hoogsteen hydrogen-bonded guanines and core cation 
coordinated to oxygen atoms.31 Studies have indicated that G4s 
participate in multiple genetic bioactions, both on physiological 
and pathological conditions, similar to genome stability or over-
expression. Experimental data has revealed that G4s are inclined 
to generate during tumorigenesis. Reasonably, as a cancer-related 
gene with a high frequency of mutation, MYC has been confirmed 
with this quadruplex near its promoter region, which is called, nu-
clease hypersensitive element III1 (NHE III1, also known as the 
CT element). Preventing MYC transcription by stabilizing G4 is 
a feasible approach. The main binders for G4 are small-molecule 
substances with high affinity, either synthetic or natural, such 
as QN1. These ligands provide multiple innovative options for 
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PDAC treatment. Ahmed et al. developed a variety of G4-binding 
molecules that update to CM03, a highly selective G4 regulator 
for PDAC, particularly for the gemcitabine-resistant type.32 Fur-
thermore, they reported that the combined use of CM03 and his-
tone deacetylase (HDAC) inhibitor suberanilohydroxamic acid 
(SAHA) can improve the treatment efficacy in different subtypes 

of pancreatic cancers. The main function of CM03 is to stabilize 
G4s, thereby inhibiting the expression of downstream promoters. 
At the molecular level, CM03 can aggravate DNA damage, while 
at the cell level, this can induce cancer cell arrest and apoptosis. 
Based on this, the addition of HDACi can lead to more genera-
tions of G4s through the epigenetic modification of the chromatin 

Table 1.  Examples of candidate inhibitors that directly or indirectly target MYC in PDAC

General mode of action Target Compound Phase Trial number Reference

Targeting the MYC 
transcription

TGF-β LY2109761 Pre-clinical 29

G-quadruplex CM03 Pre-clinical 32
G-quadruplex Porphyrin-1/2 Pre-clinical
Super enhancer GZ17-6.02 Phase I NCT03775525 36
Super enhancer Minnelide Phase II NCT04896073
BRD4 OTX015/MK-8628 Phase I NCT02259114
BRD4 GSK2820151 Phase I NCT02630251
BRD4 INCB057643 Phase I/II NCT02711137
BRD4 Entinostat Phase I NCT03925428
BRD4 ARV-825 Pre-clinical 43
BRD4 JQ1 Pre-clinical 42,46,47
CDK7 THZ1 Pre-clinical 56

Targeting the MYC 
mRNA translation

EIF5A Silvestrol Pre-clinical 59

Musashi-2 KLF4 Pre-clinical 63
IGF2BP1 LINC00261 Pre-clinical 66

Interfering with the 
MYC stability

Skp2 Curcumin Pre-clinical 72

Skp2 Arsenic trioxide Pre-clinical 74
DUB PR-619 Pre-clinical 79
CDK4/6 Palbociclib Phase I NCT03065062; 

NCT04870034; 
NCT02178436

CDK2 Dinaciclib Phase I NCT01783171 83,84
ERK1/2 Ulixertinib Phase I NCT04566393
AURKA Alisertib Phase I NCT01924260
AURKA AS703569 Phase I NCT01097512
AURKA CCT137690 Pre-clinical 91

Targeting the MYC/
MAX heterodimer

MYC-MAX dimerization Mycro3 Pre-clinical 95

MYC/MAX Omomyc Phase I/II NCT04808362
Blocking the access 
of MYC to genes

Pin1 Sulfopin Pre-clinical 102

p300 C646 Pre-clinical 112
Exploitation of 
synthetic lethality

PARP Niraparib Phase II

CDK1/5/7 Dinaciclib Pre-clinical 83
AURKB VX-680 Pre-clinical 130

AURKA, Aurora kinase A; AURKB, Aurora kinase B; AURKB, Aurora kinase B; BRD4, Bromodomain-containing protein 4; CDK4/6, Cyclin-dependent kinase 4/6; CDK7, Cyclin-depen-
dent kinase 7; DUB, Deubiquitinating enzyme; MYC, Myelocytomatosis oncogene.
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Fig. 3. Alternative approaches to indirectly target MYC. (a) MYC deregulation or loss-of-function by reducing its expression or oncogenic activity: (1) sup-
pressing the transcriptional process of MYC by stabilizing the G-quadruplex structure of genome or blockading the signal transduction from MYC to RNA 
polymerase (2) suppressing the translational process by interfering with translation initiation factors; (3) regulating the stability and degradation of MYC, or 
its antagonistic proteins, majorly via the ubiquitin-proteasome pathway; (4) targeting the formation of the MYC/MAX heterodimer; (5) blocking the access 
of MYC or the MYC/MAX heterodimer to target genes. (b) The concept of synthetic lethality (SL) and the application to MYC-driven cancer. The mutation or 
overexpression of MYC-related genes, or the monotherapy targeting the corresponding protein it expresses can be viable for cancer cells due to the com-
pensation of the counterpart protein. (6) SL was achieved through the combined pharmacological inhibition of two pathways. The star shape denotes the 
mutation. The thicker arrow denotes the increased expression. The red cross denotes the drug inhibition. The viable cell is depicted as an intact shape, and 
the inviable cell is depicted to be distorted and cracked. MYC, myelocytomatosis oncogene; MAX, MYC-associated protein X.
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structure, which has a synergic toxic effect. However, these DNA 
binding compounds remain controversial, in terms of safety. The 
biggest problem is the impairment or interference towards normal 
genomic functions. In the application of G4-binding molecule 
TMPyP4 in pancreatic cancer cells, it was reported that the in vivo 
side effect on normal cells significantly decreased.33

Super-enhancers (SEs)

In addition to the G4 area, which is the key to the activation of 
the MYC promoter, another special region in the genome named, 
super-enhancers (SEs), has recently drawn attention. As the name 
indicates, SEs are a large cluster of enhancers that generate high 
levels of transcription, and conform to cell type-specific biologi-
cal processes.34,35 A significant amount of data supports that SEs 
are closely correlated to the development of multiple cancers. It is 
possible that these tumor-related factors disrupt the regeneration 
and repair of normal signaling, and replace this with SE-oriented 
plastic networks, inducing the aberrant switch in PDAC pheno-
type. A recent study used ChIP-Seq to identify the existence of 
SEs in PDAC cell lines, and the results revealed that the MYC 
gene region also contains such element. GZ17-6.02 attenuates the 
acetylation of SE genes, which leads to low levels of transcription 
factors, sonic hedgehog pathway proteins, and stem cell markers.36 
Hence, SEs can be a novel target site towards PDAC.

c-Myc interaction to RNA polymerase

Mammalian bromo- and extra-terminal (BET) proteins are essen-
tial for the initiation of transcription, and their role in recruiting 
co-regulatory factors onto the transcription platform, including the 
promoter and enhancer area. As a member of the BET superfam-
ily, bromodomain-containing protein 4 (BRD4) has been well-
acknowledged as an epigenetic modifier. In particular, BRD4 is 
involved in the genome-wide modulation of RNA transcription 
complex assembly and follow-up transcriptional elongation.37 
Concretely, with the high affinity to acetyl-lysin, BRD4 primar-
ily triggers co-activator proteins, and locates onto hyperacetylated 
sites, similar to SEs, stimulating the phosphorylation of the car-
boxy-terminal domain of RNA polymerase II at serine 2.38,39 Af-
terwards, RNA polymerase II is released from the region adjacent 
to the promoter, and facilitates the elongation.

JQ1 is a typical bromodomain inhibitor that indiscriminately 
inhibits BRD2 and BRD4. By blocking the binding pocket of the 
apo crystal structure of the first bromodomain of BRD4, JQ1 in-
hibits the transcription of genes.40 In addition, researches on hema-
tological malignancies and solid tumors have supported the notion 
that decreasing the amount of BET bromodomains can lead to the 
downregulation of the MYC gene itself, as well as MYC target 
genes.41 However, the long-term use of BET inhibitors (BETi), 
such as JQ1, either in vitro or in vivo, would lead to the problem of 
drug resistance. According to this, researchers are exerting efforts 
to exploit new technologies and improve BETi. Sun et al. success-
fully created a drug-delivery nanoplatform that co-delivers a pho-
tosensitizer and JQ1 to the combinatory photoimmunotherapy of 
PDAC.42 Furthermore, a latest study revealed the advanced prote-
olysis-targeting chimera (PROTAC), ARV-825, which can dramat-
ically break BRD4, in order to control the MYC expression level 
in PDAC.43 PROTAC is a newly emerging method that renders the 
acceleration of drug exploitation towards “undruggable” MYC. 
The experimental data revealed that ARV-825 inhibits cancer cell 
activities, both in pancreatic cancer cell lines and spheroid models.

In clinical trials, an oral pan-inhibitor of BET, Mivebresib 
(ABBV-075), is initially undergoing in-human studies. The pre-
liminary results indicated that this has a tolerable safety profile, and 
takes effect to some extent in PDAC. However, further observation 
is needed.44 Other compounds that have entered the clinical trial 
stage include OTX015/MK-8628, GSK2820151, INCB057643, etc.

In addition, the deficiency in KDM6A, a histone H3K27me3 
demethylase, confers to the sensitivity to BETi, such as JQ1, in 
PDAC.45 BETi can restore the cell identity by suppressing the 
MYC pathway and decreasing the p63 level.45 The combined in-
hibition of BET and histone deacetylases exerts synergistic effects 
in reducing cell viability, and this probably has a higher anti-tumor 
potency, when compared to monotherapy with JQ1.46,47 Future in-
vestigations on therapeutics that target genes that regulate epige-
netics remain intriguing.

Cyclin-dependent kinase 7 and 9 (CDK7 and CDK9)

In addition to the interference of the signal transduction from 
MYC to RNA polymerase by BETi, an alternative approach is to 
target the co-activator substrates in the MYC transcription process, 
such as CDK7 and CDK9. Different from typical cell-cycle cyclin-
dependent kinases (CDKs), which are in charge of cell-cycle mod-
ulation, CDK7 and CDK9 have essential roles, particularly in the 
transcription process.48,49 For the catalytic subunit of the transcrip-
tion factor IIH complex and the positive transcription elongation 
factor P-TEFb, both are selective phosphokinases that target the 
CTD of RNA Pol II, and consequently affect the whole transcrip-
tion process. It has been confirmed in multiple experimental mod-
els that targeting RNA Pol II-related CDKs can lead to the diverse 
alteration of cellular bio-behaviors.50–52 As previously mentioned, 
MYC is an oncogene equipped with SEs that forcefully strength-
ens the transcriptional activity. Indeed, researchers have revealed 
the SE region is the major action site of CDK7 and CDK9, sug-
gesting that this subtype of CDKs may be a rational target spot 
for MYC-driven cancers.48 The most potent known CDK9 inhibi-
tor is flavopiridol, which has cytotoxicity on chronic lymphocytic 
leukemia cells.50 FIT039, a newly developed antiviral drug that 
inhibits CDK9 activity, has been reported to reduce the expression 
of E6 and E7 oncogenes in cervical cancer.53 Since there is a high 
expression of CDK9 in pancreatic cancers, the inhibition of this ki-
nase may also be applied in PDAC treatment.54 Furthermore, a re-
cent study innovatively utilized PROTAC 2 to selectively deplete 
CDK9 in pancreatic cancer cells, and the data revealed the mod-
erate reduction of cell viability.55 Similar results have also been 
observed in CDK7 inhibitors. By screening the epigenetic-related 
compound library, Lu et al. identified a specific CDK7 inhibitor, 
THZ1, which can induce the pronounced downregulation of gene 
transcription PDAC cell lines.56 These findings provide a novel 
and promising therapeutic approach to refractory PDAC.

Targeting the MYC mRNA translation

Multiple signaling pathways gather together to finely regulate the 
MYC mRNA translation process, such as the phosphoinositid-
3-kinase/mTOR, KRAS/PEAK, and WNT/β-actin pathways.57 At 
the same time, these pathways are also closely correlated to the 
development of PDAC. Regulating different signaling pathways 
and related translation factors may be a potent method to alter the 
post-transcriptional processes of MYC, and the biological behav-
iors of tumors.
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The EIF5A-PEAK1 pathway

In PDAC, KRAS is a common protooncogene with diverse func-
tions in tumorigenesis. A recent study demonstrated that KRAS 
can regulate a wide range of MYC downstream pathways with the 
assistance of translation initiation factor eIF5A, including protein 
translation, cytoskeleton organization, and the cell cycle regula-
tory pathway.58 In this process, the crucial co-worker is the focal 
adhesion kinase PEAK1, which transmits integrin and growth fac-
tor signals mediated by TME. The EIF5A-PEAK1 pathway has 
been confirmed to participate in various cancer entities. An in vitro 
experiment identified that transcription factors YAP1 and TAZ are 
the major targets of eIF5A-PEAK1 signaling. The interdiction of 
eIF5A-PEAK1 signaling in PDAC cells can inhibit the YAP/TAZ 
protein expression, thereby controlling the MYC mRNA trans-
lation to downregulate c-Myc levels. In contrast, the amplified 
eIF5A-PEAK1 signaling would upregulate the YAP1/TAZ levels, 
and confer stemness to pancreatic cells. Presumably, blocking the 
eIF5A-PEAK1-YAP/MYC pathway may effectively reduce tumo-
rigenicity and tumor growth in PDAC. Silvestrol, an inhibitor of 
eIF4A, has been recently reported to repress the c-Myc expression 
in pancreatic cancer in vitro and in vivo.59

The AKT/mTOR pathway

In the human body, the Ser/Thr kinase mechanistic target of ra-
pamycin (mTOR) is an important downstream target of the PI3K 
signaling pathway. mTOR plays important roles in numerous bio-
logical processes, including cell survival, growth, proliferation, 
gene expression, and the regulation of apoptosis, and MYC trans-
lation is no exception.60 Furthermore, PI3K/AKT/mTOR signaling 
is often linked to drug tolerance and therapeutic resistance in pan-
creatic cancer. A study revealed that the inhibition of the mTOR 
pathway can induce tumor cell apoptosis and reduce oncogenic 
phenotypes, coupled with c-Myc downregulation.21 Conversely, 
the reduction in c-Myc expression would increase the sensitivity of 
pancreatic cancer cells to mTOR inhibition. However, the directly 
targeting of mTOR remains as a historical challenge for some can-
cer types, especially in advanced PDAC. Despite this, there are 
substitute methods to target mTOR-related factors, such as eIF4A, 
AKT, PI3K, etc. A number of PI3K/AKT/mTOR pathway inhibi-
tors are undergoing research at present, such as sapanisertib, vistu-
sertib, gedatolisib, etc.61 Overall, as mentioned above, determining 
the weak links in the complex MYC translation regulatory network 
may offer new target spots in PDAC treatment.

The RNA binding protein

The abnormal epigenetic alteration of genome can induce human 
cancer. RNA-binding proteins (RBPs) are a special kind of proteins 
that are critical for maintaining the transcriptome through a series 
of post-transcriptional regulatory mechanisms.62 RBP Musashi-1 
(MSI1) and Musashi-2 (MSI2) were reported to exist in tumor 
cells, and these work as regulators of multiple critical biological 
processes relevant to cancer development.63 Furthermore, MSI1 
and MSI2 bind to the mRNA, and regulate the translation of on-
cogenic proteins, including MYC. Further studies on Musashi pro-
teins have revealed that the suppression of KLF4, a transcriptional 
repressor of MSI2, can lead to MSI2 hyperexpression in PDAC 
cells, thereby enhancing the cancer progression and metastasis.64 
Targeting RBPs is a new treatment direction, but this remains chal-

lenging. Some preclinical researches are presently being undertak-
en, including those that use RNA interference (RNAi) technology, 
hoping to lead to further breakthroughs. Another group of RBPs, 
known as coding region instability determinant-binding proteins 
(CRD-BPs), is also essential for regulating MYC mRNA stabil-
ity.65 Coding region instability determinants (CRDs) are sequences 
within the mRNA with high affinity for CRD-BPs. CRD-BPs pro-
tect the mRNA from endonucleolytic attacks, thereby prolonging 
the mRNA half-life.65 A member of CRD-BPs, insulin-like growth 
factor 2 mRNA-binding protein 1 (IGF2BP1), can equip the MYC 
mRNA with four protein subunits: HNRNPU, SYNCRIP, YBX1 
and DHX9.46.66 Experimental data has revealed that IGF2BP1 
family proteins are significantly upregulated in pancreatic cancer 
cells, when compared to normal tissues. Due to this, researchers 
are developing inhibitors of IGF2BP1, or sequestering the binding 
to target proteins to treat cancer, including long noncoding RNAs, 
such as LINC00261.67 The forced expression of LINC00261 can 
also inhibit cell glycolysis, and induce cell cycle arrest and apop-
tosis.

Targeting MYC protein stability

The ubiquitin-proteasome system (UPS)

c-Myc, as an evolutionarily conservative transcriptional regulator, 
is involved in regulating 15% of the gene expression in the human 
genome.10 However, within the cell, c-Myc is an extremely unsta-
ble protein with a half-life of only 20-30 minutes, and is majorly 
degraded by the UPS.

The UPS is a crucial type of protein post-translational modi-
fication that participates in the degradation of more than 80% of 
proteins. The multistep cascade reaction consists of ubiquitin (Ub), 
ubiquitin-activating enzymes (E1), ubiquitin conjugating enzymes 
(E2), ubiquitin ligase (E3), deubiquitinating enzymes (DUB), and 
proteasomes.68 After the target protein receives the ubiquitination 
signal, primarily with the participation of ATP, the glycine resi-
dues at the ubiquitin C-end form high energy thioester bonds to the 
cysteine residues of E1, which pass the activated ubiquitin mol-
ecules to E2. Under this action, in which E2 cooperates with E3s, 
the ubiquitin C-terminal is connected to the lysine residues of the 
substrate protein through an isopeptide bond. The last step is per-
formed by proteasomes, which specifically identify and degrade 
the substrate protein. Deubiquitination is the reverse process of 
ubiquitination, which releases ubiquitin molecules, and regulates 
the stability, positioning and activation of the C-terminal between 
substrate proteins, and the poly-ubiquitin chain.

Studies conducted in recent years have revealed that ubiquitin 
connectors that regulate c-Myc stability can be classified into three 
categories, according to the binding domain: (1) E3 ubiquitin con-
nectors that contain the really interesting new gene domain, such 
as the S-phase kinase-association protein (Skp); (2) E3 ubiquitin 
connectors that contain the homologous to E6AP C-terminus do-
main, such as F-box and WD-40 domain protein 7 (Fbw7), FBXO 
and β-Trcp; (3) E3 ubiquitin ligase that contains the U-box do-
main, and other E3 ubiquitin ligases.69,70 Although Skp2 and Fbw7 
belong to the F-box ubiquitin ligase protein family, both have dif-
ferent roles from each other. Skp2 has a dual action on c-Myc. This 
mediates the ubiquitination and degradation of c-Myc, and enhanc-
es the transcription of the target gene. Fbw7 can specially identify 
the phosphorylated T58 site of the c-Myc protein, thereby reducing 
the transcriptional activity of c-Myc, and regulating the ubiquityla-
tion and degradation process. Furthermore, Fbw7 functions as a 
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tumor suppressor that downregulates c-Myc levels. A recent study 
on PDAC revealed that protein arginine methyltransferase gene 5 
(PRMT5) can silence the expression of FBW7 and elevate the ex-
pression of c-Myc, thereby promoting cancer cell proliferation.71 
Hence, the inhibition of SP2 or protection of FBW7 may be used 
as a method to alter the c-Myc stability, and thereby treat pan-
creatic cancer.72 The PRMT5/FBW7/c-Myc axis may be a novel 
therapeutic target for the treatment of pancreatic cancer.71

SKp2, as an oncoprotein itself, can control the cell proliferation 
by reducing p27, and enhance the transcriptional activity of c-Myc 
to promote more cells into the S stage and accelerate cell prolifera-
tion.73 To date, main researches have achieved cancer inhibition by 
consuming the content of SKp2 or weakening its function. It has 
been reported that in PDAC, arsenic trioxide, as a Skp2 inhibitor, 
can downgrade the SKP2 expression, and inhibit cancer invasion 
and proliferation in in vitro models.74

Ubiquitination and deubiquitination regulate the dynamic bal-
ance of intracellular proteins. DUBs can hydrolyze the isopeptide 
bond between the ubiquitin and substrate, releasing ubiquitin mol-
ecules, and substrate proteins that lose the ubiquitin chain label 
signal, which is identified by 26S proteasomes, thereby maintain-
ing stability. Present researches have revealed three major DUBs 
that contribute to c-Myc stabilization: USP28, USP7 and USP36. 
The first nucleoplastic DUB identified to connect with c-Myc is 
USP28. However, there is a lack of direct interaction between 
these. USP28 indirectly acts with c-Myc through ubiquitin ligase 
Fbw7α, which weakens the activity of Fbw7α and indirectly regu-
lates the stability of c-Myc. USP28 may interact with the WD40 
repeat sequence, and be a substrate of Fbw7. Within these, the 
S62 and T58 sites of c-Myc are in turn phosphorylated as recog-
nition binding sites of Fbw7, and mutations in the T58 and S62 
sites would affect the interaction between c-Myc, and Fbw7α and 
USP28, thereby regulating the stability and function of c-Myc.75,76 
Recent studies have identified more deubiquitinases that mediate 
the MYC-driven PDAC oncogenesis and progression. USP22 was 
identified to indirectly stabilize c-Myc through the selective regu-
lation of the NFAT protein.77 In addition, USP22 can suppress the 
immune infiltration and immunotherapy sensitivity of pancreatic 
cancer.78 Since USP22 has a relatively high expression in PDAC, 
this may be used as a new treatment approach. The combination of 
chemotherapy and DUB inhibitor PR-619 has been demonstrated 
to prevent chemoresistance by blocking the c-Myc pathway.79

The ERK1/2 inhibitor

Except for the ubiquitin system that regulates c-Myc protein sta-
bility, a novel study revealed that ERK1/2-dependent mechanisms 
can maintain MYC protein stability. The application of ERK1/2 
inhibitors would result in the rapid proteasome-dependent loss of 
MYC proteins and suppression of PDAC growth through ERK1/2-
dependent or non-dependent mechanisms.4 It is noteworthy that 
the degradation of MYC is independent of the PI3K-AKT-GSK 3 
signaling or E3 ligase. However, under the control of the suppres-
sion-induced feedforward mechanism through the EGFR/SRC/
ERK loop, this would result in ERK5 activation and the phospho-
rylation of S62, thereby preventing c-Myc degradation.80 Targeted 
therapy for multiple links of this regulatory pathway may contrib-
ute to the treatment of pancreatic cancer, such as the simultane-
ous inhibition of ERK1/2 and ERK5. In addition, a recent study 
revealed that the transcription factor, SLUG, can confer the resist-
ance to MEK1/2 inhibitors in pancreatic cancer by uncoupling tu-
mor progression from RAF-MEK1/2-ERK1/2 signaling, paving a 
path for the development of new therapies against PDAC.81

Cyclin-dependent kinase (CDK)

Similarly, protein kinase CDK2 (formerly casein kinase II), is an 
enzyme engaged in multiple pathways of tumorigenesis, which 
can directly target c-Myc proteins. The phosphorylation by CDK2 
frees Myc from the degradation induced by the ubiquitin system. 
Interestingly, CDK2 is regulated by the KRAS/ERK/Src/STAT3 
signaling pathway, and is closely correlated to PDAC, which har-
bors a high variation rate of KRAS.82 Hence, the idea of regulat-
ing CDK2 to destabilize MYC may make a breakthrough in the 
treatment of refractory pancreatic cancer. In addition to the acidic 
region and the nuclear localization sequence of the MYC protein 
(both are phosphorylated by CDK2), the transactivation domain 
(TAD) of MYC is a third region of phosphorylation.57 Within the 
TAD, Ser-62 is one of the sites that have drawn particular atten-
tion. The kinases implicated in the phosphorylation of the Ser-62 
site of TAD of MYC include cyclin-dependent kinase 1 (CDK1). 
These pathways together contribute to the post-translational modi-
fication of MYC, thereby impinging on its function. Dinaciclib, as 
a non-selective CDK inhibitor, has been proven to be toxic to pan-
creatic cancer cells, and inhibit the growth of tumors in vivo.83,84 
Furthermore, the suppression of CDK expression by blocking the 
ERK/Src/STAT3 pathway may also serve as an alternative remedy 
for PDAC treatment. This was demonstrated in the study conduct-
ed on Oxalidaceae, which is a tradition Korean plant medicine.85

Small ubiquitin-like modifier (SUMO)

Small ubiquitin-like modification is a newly discovered system 
similar to the UPS, which can modify post-translational proteins.86 
More than 3,000 proteins have been identified as SUMO in cells. 
SUMOylation is an important mechanism that regulates the bio-
logical function of intercellular proteins, thereby affecting the sta-
bility of proteins and interactions between proteins, maintaining 
the dynamic balance in the normal physiological and biochemical 
process of the human body, and playing a vital role in tumor onco-
genesis and development. Furthermore, SUMOylation engages in 
a series of enzymatic cascade reactions that involve ubiquitin acti-
vating enzyme E1, ubiquitin conjugating enzyme E2 and ubiquitin 
ligase E3, in which E3 can modify specific substrate proteins. It 
has been identified that SUMO-specific proteases (SENPs) can not 
only catalyze the maturation of the SUMO precursor and complete 
the SUMO modification, but also mediate the de-SUMOylation of 
substrates during the metabolism of SUMO. When the dynamic 
balance of SUMOylation and de-SUMOylation is destroyed, both 
the abnormal expression of the SUMO protein and SENPs would 
lead to cellular dysfunction, which in turn, promotes the develop-
ment of cancer. The abnormal expression of the SUMO protein or 
SENPs exists in various malignant tumors. The overall survival 
for PDAC with a high expression of SUMO protein or SENP re-
mains low. A recent study conducted by Biederstädt et al. revealed 
that SUMO suppressors, such as ML-93, can induce G2/M phase 
arrest and cell death, and that SUMO inhibition is closely corre-
lated to the hyperactivation of MYC, suggesting that SUMO in-
hibitor-based therapy can be a potential option for the treatment 
of advanced PDAC subtypes.87 In recent years, SUMO1P3, one 
of the pseudogene-expressed lncRNAs originally observed in gas-
tric cancer, has attracted the interest of researchers. It was found 
that compared with normal pancreatic tissues, SUMO1P3 is high-
ly expressed in PDAC, and that its relative expression is closely 
correlated with the tumor size, lymph node metastasis, and TNM 
stage.88 In addition, tapping SUMO1P3 inhibits the proliferation, 

https://doi.org/10.14218/JERP.2021.00015


DOI: 10.14218/JERP.2021.00015  |  Volume 7 Issue 3, September 2022172

Liu Y.H. et al: Targeting MYC to combat pancreatic cancerJ Explor Res Pharmacol

migration and invasion of pancreatic cancer cells, and may be as-
sociated with the epithelial-mesenchymal transition process.

Aurora kinase A (AURKA)

As a member of the Aurora family, which is activated via auto-
phosphorylation, AURKA plays an essential role in carcinogenesis 
through the interaction with MYC.89 Furthermore, AURKA forms 
a complex with N-Myc, protecting N-Myc from FBW7-mediated 
proteasomal degradation. In addition to Myc, a wide range of on-
cogenes, tumor suppressors and mitosis regulators have been pres-
ently identified as AURKA substrates.90 Some small molecules 
that target AURKA have been exploited and included in preclini-
cal trials for the treatment of different cancer types. A research 
on mouse models of PDAC revealed that the administration of 
CCT137690, an AURKA inhibitor, induced cancer cell death and 
tumor growth retardation in vivo, and reduced the phosphorylation 
of AURKA at the molecular level.91 In addition, protein kinases 
SA16 and IB35 were identified to exhibit specific inhibitory activ-
ity towards PDK1 and Aurora kinase A, thereby reducing pancreat-
ic cancer cell proliferation and colony formation.92 AURKA might 
be a vulnerability for the treatment of pancreatic cancer.

Targeting the MYC-MAX heterodimer

MYC proteins are specifically characterized by the basic helix-
loop-helix-leucine zipper region, where another synergistic protein, 
MAX, can bind and form a MYC-MAX complex.57,93 In the MYC 
network, the homodimers of MYC or MAX proteins can bind to the 
original E-box in the promoters of MYC-targeted genes, and acti-
vate a wide range of gene expression, while MAX can also form 
a heterodimer transcription repressor with MXD. It is known that 
the loss of MAX in mice considerably weakens the carcinogenic ef-
fect of MYC, even during the over-transcription of oncogene MYC. 
Nevertheless, in prior systemic chemotherapy cells, MAX depletion 
has a positive effect on the expression of MYC family proteins, and 
the overexpression-induced cell growth effects were partially elimi-
nated.1 Overall, the MYC/MAX complex is a kind of efficient di-
mer that regulates cell proliferation, metabolism, differentiation and 
apoptosis, as well as tumorigenesis. The presently developed small 
molecular inhibitors, 10058-F4 and 10074-G5, have been shown 
through in vitro experiments to inhibit the formation of heterodimers 
of c-Myc and MAX.94 However, the rapid degradation and poor dis-
tribution of these molecules in vivo prevent these from further play-
ing a role. Mycro3, a molecule that inhibits c-Myc binding to MAX, 
has exhibited remarkable therapeutic effects in mouse PDAC mod-
els, rendering it a potential drug for MYC-driven PDAC.95 In addi-
tion, several pioneering alternatives to regulate c-Myc are emerging. 
Omomyc, a dominant-negative allele of MYC, selectively prevents 
the MYC/MAX dimerization-dependent transcription by heterodi-
merizing with MYC or MAX.96 In convertible transgenic mouse 
models, Omomyc exhibited a wide treatment window, independent 
of carcinogenic lesions or origin tissues, and induced only mild and 
reversible side effects in normal tissues.97–99 Early after systemic ad-
ministration, Omomyc quickly reached the tumor site, successfully 
inhibited the target, reduced the tumor grade, and promoted disease 
withdrawal. At present, Spanish scholars have generated Omomyc 
for lung cancer, and this has entered clinical trials.98 In pancreatic 
cancer, this requires further exploration. Experiments are presently 
being undertaken, and the results would foster further translational 
research.

Targeting the access of MYC to downstream genes

MYC acts as a transcription factor. After the binding of MYC to 
MAX, the complex needs to locate onto the chromosome segment 
around the target gene, which requires the participation of many 
co-activation molecules, in order to achieve the accurate position-
ing of the dimer, and change the chromatin into a structure con-
ducive to binding. In particular, the first problem to be addressed 
is the nuclear localization of MYC/MAX, since most of the MYC 
target genes are located within the nucleus, including some tumor-
related genes. Pin1, a prolyl isomerase that interacts with sub-
strates that contain phospho-Ser/Thr-Pro, regulates the function of 
these substrates via the cis-trans isomerization of peptide bonds.100 
It has been shown that Pin1 can regulate the conformation of the 
MYC protein by phosphorylating serine 62, and inducing this to 
dynamically evolve with spatio-temporal changes. These changes 
are in favor of the nuclear localization of c-Myc, thereby initiating 
its role on the transcription of target genes at the chromatin level. 
Furthermore, it has been reported that Pin1 maintains proliferation 
signals by enhancing almost 50 cancer-related genes or growth 
promotion factors, as well as repressing tumor inhibitors or growth 
suppressors, making it an attractive focus to simultaneously block 
multiple cancer-driven pathways.101 Recently, Pinch et al. devel-
oped a covalent inhibitor of Pin1, and validated its effectiveness to 
impair cell viability in PDAC cancer lines.102 In mouse models of 
pancreatic cancer, Sulfopin induced the downregulation of c-Myc 
target genes, reduced the tumor progression, and improved the 
rate of survival.103,104 Further studies are required to investigate 
the therapeutic effects and safety of Pin-dependent drugs, such as 
Sulfopin, in the treatment of pancreatic cancer.

As previously mentioned, in addition to its direct activating ef-
fects on genome, c-Myc can indirectly regulate the transcription of 
target genes with the assistance of different mediators, such as his-
tone acetylase, chromatin regulatory proteins, basic transcription 
factors, and DNA methylase. More concretely, c-Myc participates 
in the positive transcriptional regulation via the protein-protein 
interaction in three ways: (1) interacting with BPTF to promote 
the transposition of nucleosomes and widen the space of the cor-
responding transcription sites; (2) recruiting histone acetyltrans-
ferases (HATs), and in turn, acetylate the adjacent regional histone; 
(3) recruiting transcription extension negative regulator p-TEFb. 
These mechanisms simultaneously or sequentially act together, 
improving chromatin accessibility, and promoting the accession of 
RNA polymerase.105–107

Previous studies have revealed that the inactivation of BPTF 
proteins (an important component of the nucleosome remodeling 
complex in pancreatic precancerous lesions) significantly delays 
tumor development and prolongs the survival of c-Myc overex-
pressing cells, and that the BPTF expression has a positive cor-
relation with MYC gene signatures, implying that BPTF, as a key 
co-factor for c-Myc, performs a role in transcriptional initiation.107 
The pharmacological inhibition of BPTF with C620-0696, a potent 
inhibitor of BPTF, suppresses the expression of MYC in non-small 
cell lung cancer cells. However, its effectiveness in PDAC has not 
been clarified, to date.108

MYC can acetylate chromatin specific sites, and convene the 
associated co-factors to facilitate this process, such as transforma-
tion-transactivation domain-associated protein (TRRAP) or other 
HATs.

Located at 7q22.1 and highly conserved in evolution, TRRAP 
is a part of HAT complexes that form transcriptional activity cent-
ers together with other transcription factors, such as MYC, E2F1 
and p53. In 1998, McMahon et al. reported that TRRAP interacts 
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with the c-Myc N terminus, and that the trans-dominant mutants of 
TRRAP or antisense RNA can prevent MYC-mediated oncogene-
sis. This shows that TRRAP is an important co-factor in the MYC-
induced transcription factor pathway.108 In a study conducted on 
hepatocellular carcinoma (HCC) cell lines, the researchers report-
ed that the depletion of TRRAP or its cofactor, histone acetyltrans-
ferase KAT5, can induce the p53- or p21-independent senescence 
of HCC cells by activating mitotic genes.109 Several HATs have 
been identified in favor of MYC-mediated transcriptional initia-
tion, such as p300, gcn5 and CBP.110,111 In PDAC, certain research 
progress in HAT inhibitors has been made, such as the selective 
p300 inhibitor C646.112

In addition to histone acetylation, MYC can also modulate his-
tone methylation, thereby altering the transcriptional activity of 
target genes. A recent study revealed that MYC can interact with 
Dpy30, a major H3K4 methyltransferase complex, in order to fa-
cilitate chromatin accessibility.113 Furthermore, the consumption 
of Dpy30 effectively blocked the MYC-dependent cell deteriora-
tion, without affecting normal cell growth. Epigenetic targets in 
the Dpy30 methylation pathway may be exploited for potential 
PDAC treatment. Furthermore, ASH2L, a subunit of KMT2 meth-
yltransferase complex tri-methylating lysine 4 of histone H3, is 
also a binding co-factor for MYC. Chen et al. reported that circ-
ASH2L is highly expressed in PDAC cells, is essential for tumo-
rigenesis and tumor progression, and is probably associated with 
lymphatic invasion or TNM staging, suggesting that circ-ASH2L 
may be a useful biomarker for PDAC.114 Inhibitors toward these 
kinds of histone methylases in PDAC treatment are undergoing 
experimental research.

Crucial for DNA replication, cyclin can be upregulated by c-
Myc to promote its transcription. Since the CDK-cyclin complex 
can be suppressed by a number of factors, such as p21, to ensure 
smooth replication, c-Myc has also evolved its capacity as a nega-
tive transcription regulator. That is, c-Myc can broadly interact 
with functionally diverse transcription factors, notably Miz-1, a 
competitive inhibitor of p300. Miz-1 is a BTB/POZ domain zinc 
finger protein with 13 zinc fingers. Through its direct interaction 
with c-Myc, Miz-1 can recruit the MYC/MAX complex and pre-
vent the recruitment of p300.115 Since Miz-1 can promote the tran-
scription of p21 and other genes, this specific inhibition method 
can better reduce the expression of proliferative negative factors, 
and promote proliferation.116 It has been shown that c-Myc is very 
common in HCC to inhibit proliferative negative factors, such 
as p16 and p27.117 Indeed, Miz-1 has been a MYC co-factor of 
concern, and its role on tumorigenesis is undergoing experimental 
research.

Synthetic lethality

MYC has been considered “undruggable” due to its lack of success 
in MYC-targeted related clinical therapy. Synthetic lethality (SL) 
is a promising approach to target MYC-dependent vulnerability 
in cancer. The concept of SL was first described in biogenetic re-
search in the early 20th century. This means that the simultaneous 
inactivation of two specific nonlethal genes can cause cell death.118 
In 1997, Hartwell et al. proposed that synthetic lethal interactions 
can be exploited to identify new anticancer drug targets.119 The 
use of synthetic death principles to develop new drugs lead to the 
identification of specific mutations in cancer cells and key coun-
terpart genes to form SL (Fig. 3B). In theory, this approach can 
be translated into personalized therapy, and applied to any type of 
cancer mutation.

Recent studies have defined new categories of synthetic le-
thal interactions.120 As predicted by Elledge et al., some of these 
synthetic lethal genes play an important role in the recovery from 
DNA replicational stress induced by specific oncogenes.121 Broad-
ly, SL can be divided into three categories: oncogene-addicted, 
non-oncogene-based, and drug-based SL. SL dependent on KRAS 
overexpression is the most common example of oncogene addic-
tion.122 Non-oncogene-based SL means that the depletion of a sin-
gle gene increases the sensitivity of cancer cells to the inhibition of 
a complementary pathway. Drug-based SL is defined by the syn-
ergistic cytotoxicity with monotherapy by blocking compensatory 
pathways that sustain tumor growth. This new classification can 
lead to novel strategies for developing MYC-targeted drugs.

Since there is a high mutation rate of MYC in PDAC and a wide 
interaction network with other genes, drugs that target the MYC 
gene by exploiting the concept of SL would have a promising fu-
ture. However, due to the difficulty of finding synthetic lethal can-
didates, these drugs are still undergoing research. A major account 
for this is the lack of overlap in results obtained from different 
synthetic lethal screenings. The conventional large-scale loss-of-
function screening was dependent on RNAi technology, and there 
was a lack of specificity for high-throughput applications.123 For-
tunately, the adaptation of CRISPR technology for the large-scale 
mapping of genetic networks has made up for this defect. It can be 
observed that multiple druggable targets have been identified via 
genome-wide CRISPR screening in recent years.124 Finally, big 
data and in silico platforms have been recently proposed as novel 
methods to elucidate potential therapeutic targets.120

The classic drugs developed according to the principle of SL are 
PARP inhibitors (PARPi). Poly (ADP-ribose) polymerase (PARP) 
transfers PAR or mono-ADP-ribose to the target proteins, thereby 
regulating a variety of biological activities, such as DNA replica-
tion and transcription.125 In 2005, scholars from the UK reported 
the synthetic lethal interaction of PARP with breast cancer suscep-
tibility genes BRCA1 and BRCA2.126,127 Subsequently, research-
ers have reported that the efficacy of PARPi is not necessarily 
limited to germline-mutated BRCA1/2 tumors. Indeed, the sensi-
tivity of cancer cells toward PARPi is closely associated with the 
defects in homologous recombination (HR) repair.128 This means 
that PARPi may offer more treatment options for different cancer 
types, especially MYC-driven cancers with the instability of ge-
nome. After the first success in ovarian cancer in 2014, PARPi was 
extended to the treatment of pancreatic cancer. To date, there are 
over 30 registered PARPi agents for pancreatic cancer, and these 
are undergoing clinical trials.

At present, PARPi is confirmed to have a strong impact on 
MYC-mediated bioactivities. A study conducted by Carey et al. 
demonstrated that the combination of PARPi niraparib and dinaci-
clib (the inhibitor of the cyclin-dependent kinase, leading to the 
downregulation of MYC expression), yielded HR downregulation, 
and in turn, SL in MYC-driven triple-negative breast cancer cells, 
and in pancreatic, ovarian and colon cancers.129 Similarly, Yang 
et al. reported that inhibitors of AURKB may be synergistic with 
MYC in the induction of a lethal form of autophagy.130 A novel 
attempt was made by Lankes et al. to utilize genomics analysis 
and unbiased pharmacological screening.77 Their team found that 
proteasomal inhibitor Bortezomi can trigger the MYC-related vul-
nerability. Their findings provided the rationale to further develop 
the precise targeting of the UPS as a subtype-specific therapeutic 
approach. In addition, some drug-based synthetic lethal vulner-
abilities of MYC expression, or the upstream or downstream path-
ways have been identified in PDAC cell lines. In 2013, Gendre et 
al. reported that the suppression of Akt phosphorylation restored 
the rapamycin sensitivity in pancreatic cancer cells with defec-
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tive TGF-β/Smad4 signaling.131 Through in vivo CRISPR screen-
ing, Wei et al. reported PRMT5 as a potential combinational target 
to form SL with gemcitabine (Gem) in pancreatic cancer cells.132 
It was subsequently proven that the depletion of PRMT5 resulted 
in synergistic cytotoxicity with Gem. Their subsequent experiment 
supported the notion that PRMT5 inhibition leads to the depletion 
of replication protein A, which plays an important role in the HR 
process. Recently, Du et al. reported that the combined therapy with 
salirasib and Eeyarestatin I (inhibitors of RAS and the endoplasmic 
reticulum-associated protein degradation [ERAD] pathway, respec-
tively) can induce an unfolded protein response, and even SL, in 
murine and human PDAC cells.90 Furthermore, they found that the 
CRISPR-based genetic knockout of key ERAD components, HRD1 
and SEL1L, can sensitize PDAC cells to salirasib.

In summary, with the introduction of the concept of SL, re-
searchers can postulate the synthetic lethal relationship of MYC 
with various molecules or events previously mentioned, such as 
CDK1/2, Aurora kinase, BTE inhibition, and p300 inactivation, 
which was validated by continuous preclinical advances in other 
malignancies.83,120,133–136 Despite the slow progress in the SL-
based therapy of PADC, a bright prospect is well-expected, con-
sidering the strong connection between PADC and MYC overex-
pression. Further developments are required before these synthetic 
lethal targets can bring clinical benefits.

Other MYC targeting approaches

Despite the difficulty in the direct targeted therapy of MYC, re-
searchers have attempted to directly target the MYC gene through 
cellular penetrating peptides, macropinocytosis, siRNA, CRISPR-
Cas gene editing technology, etc.137–140 In addition, various non-
coding RNAs, such as circRNA, lncRNA and miRNA, were re-
ported to participate in multiple biological processes of MYC, and 
regulate its function.141–143 The modulation of these RNAs may 
serve as a method of targeted therapy.

Future directions

The incidence and mortality of PDAC are on the rise worldwide, 
attracting increasing attention from medical experts all over the 
world. Great progress has been made in diagnosis, treatment and 
basic research, but there are still many unanswered questions. The 
pathogenesis of PDAC remains unclear, and further research is 
needed. MYC is closely correlated to the progression of PDAC. 
This review presents the multiple mechanisms of MYC in affect-
ing PDAC, and provides new ideas for the treatment of PDAC by 
acting on MYC. It was considered that further research would lead 
to greater discoveries in the diagnosis and treatment of PDAC.

Conclusions

Drugs that target the MYC gene transcription for PDAC, such as 
BETi and HDAC inhibitors, are generally entering early clinical 
studies. However, more efforts are needed, since there are many 
targets relevant to the MYC gene transcription, and that targeting 
a single vulnerability can easily cause the compensatory feedback 
of cells, leading to unsustainable efficacy and even dug resistance.

Interference with the formation of the MYC/MAX dimer is 
a popular research idea to inhibit the function of MYC proteins, 
which is expressed at a high level in the preclinical development 

stage. Since the MYC/MAX dimer is downstream of the MYC 
signaling pathway, the side effects would be much less. However, 
the interface of the protein-protein interaction (PPI) of the dimer 
is very large, making it difficult to identify suitable binding areas 
and methods to develop small molecular drugs. Although the in-
terference with the PPI remains as a challenge, this presents as an 
opportunity for the development of drugs that target MYC/MAX.

Targeting the MYC protein ubiquitination system is a novel 
idea. The Aurora-A kinase inhibitor MLN8237, which was detect-
ed with the activity of inhibiting the deubiquinization system of 
MYC proteins, once progressed to phase I/II clinical trials. How-
ever, its development was eventually terminated due to safety is-
sues. Finally, the development of drugs based on MYC SL is being 
gradually recognized and valued in the industry.
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